
Intergraph:  July 2, 1995

1

Temporal IRAD Preliminary Design and Findings

    Part Two:  Temporal Prototype Preliminary Design

2 July 1995

Intergraph Corporation

For questions and comments, please contact:

Gail Langran Kucera
604-360-2655

kucera@islandnet.com

This report describes the work to date on Intergraph's Internal R&D (IRAD) project on
spatiotemporal modeling for geographic decision support, commonly referred to as the
"Temporal IRAD."  The work is described in two parts, released as separate reports.
Part One (released on 4 May 95) documents the reasoning behind the many choices that
have led to a provisional design.  Part Two (this report) describes the provisional design
itself and the prototyping plans.  A final report will be released upon completion of the
prototype.

Gail Kucera, the IRAD's principle investigator, authored this report.  However, the
thoughts of many are represented here through literature review and lengthy
discussions internal to Intergraph.  In particular, Harold McDaniel, Janet Conklin, and
Sam Bacharach were generous with their expertise and advice, which was gratefully
received and incorporated within.



Intergraph:  July 2, 1995

2

Temporal IRAD Preliminary Design and Findings

Part Two:  Provisional prototype design
Object model
World time vs. database time
Bracketing of effective dates
The role of timestamps in information retrieval
Temporary changes
Confirming inferred information
Error correction
Temporal data management methods
Temporal integrity checks
Changes to geometry and topology
Measures to facilitate analysis
Summary of this work

This report describes the logical model of the Temporal IRAD prototype.  Because the
prototyping process is considered to be research, not development, this design is the
starting point upon which we will build.  For background on the rationales for design
elements described here, refer to Part One:  Design Choices and Rationales, issued by
Intergraph in early May 1995.

Spatiotemporal modeling is of interest to all GIS applications, although to varying
degrees.  At minimum, modeling database changes through linked feature versions is a
natural way to manage transactions and facilitate database rollbacks.  This permits us to
remove all changes made from a faulty data source, by a particular data analyst, or in a
particular timeframe (for example, during a period of system crashes).  It also fosters
accountability among data users, because we can pose the question, "What did we
know and when did we know it?"  Modeling changes in the world is a second thread of
temporality; the discussion that follows distinguishes the two at length.  Suffice to say
that the history of features as they changed in the world (assuming that the change is
asynchronous to database changes) permits us to ask questions of causality and attempt
to extrapolate into the future.

The data modeling described in this report is intended to address the most difficult
temporal requirements, and therefore to form a superset of what would be a temporal
solution for most systems.  The requirements addressed include a high degree of
uncertainty, asynchronicity of world and database, a need for prediction, problems with
error, a desire to discriminate individual attribute changes, and rapid performance.  The
sections that follow present a basic object model, discuss critical aspects and tradeoffs of
temporal data management, describe how various situations would be handled within
the object model, and add detail progressively.



Intergraph:  July 2, 1995

3

1.      Object model   

The intent of this work is to model geographic features as they change over time.  A
feature is characterized by its behavior and location in time and space.  Feature
character is translated to a storage object via defined attributes and geometry.

The object model for temporal features has four classes:  feature, version, geometry, and
attribute.  Each feature has one or more versions, and each version has a geometric
description and one or more attributes.  Figure 1 describes the object model using OMT
(Object Modeling Technique) notation.  A  box represents a class.  The box's middle part
is reserved for class attributes; its lower part for class methods.  Note that physical
objects in the intended prototype implementation may not correspond exactly with the
logical objects described here.  The object model emphasizes conceptual clarity; the
object implementation will emphasize performance.

Feature Version Attribute 
has 

1+

Geometry
has 

1+

has 1+

Figure 1.  The object model for the prototype temporal system.  Each feature has one or more versions,
and each version has one or more attributes and geometric elements.

2.       World time vs. database time    

Two classes of time are clocked in the temporal prototype:  world time and database
time.  World time is when feature data were collected in the world (DTOI for imagery)
or (if available) when a feature change actually occurred.  Database time is when the
data were committed to the database.

The possible relationships between world and database time should be constrained to
the extent possible for integrity control.  Most systems can safely constrain the
relationship so world time always precedes database time (Figure 2a).  Thus, a change
occurs in the world, it is observed, then it is recorded in the database, in that sequence.
It is possible for database time to precede world time if a change is planned or expected,
then recorded in the database with a future effective date in world time (Figure 2b).
Both situations are possible in TFG (Figure 2c); for that reason, the temporal prototype
will not constrain the relationships between world and database time.



Intergraph:  July 2, 1995

4

world

db

a) b)
world

db

c)
world

db

Figure 2.  Possible relationships between world and database time.  a)  World time leads database time
when changes observed in the world are later recorded in the database.  b)  World time lags database
time when changes are recorded in the database before they occur in the world.  c)  Systems such as
TFG can support both relationships between world and database time.

Timestamp relationships are rich sources of temporal information (Table 1).  They tell
how timely the information is, the extent of future plans, rate of change or rate of data
collection, rate of database updates, and orderliness of the updating process.

Table 1.  The meanings of relationships between timestamps for a given feature version.

World time before db time The difference is the timeliness of the information.

DB time before world time The difference is the degree of extrapolation into the future.

World times between versions The difference is the rate of change, combined with the amount of
intelligence available in that area.

DB times between versions The difference is the rate of data capture during that period.
During TFG's cold start, the intervals between db times are likely
to be very short.

World and db times between versions The less linear the correlation, the more retroactive, expected, or
corrective information has been inserted.

Because timestamps are so useful, the temporal prototype will use them liberally.  This
provides an upwardly mobile system that is capable of rationally describing complex
sequences of events that change the status of features.  The prototype will not, however,
include code to exploit all the descriptive properties of timestamps.  These can be added
judiciously as requirements are explored further.

3.     Bracketing of effective dates    

Each feature "lives" for a given period in the world and in the database.  Likewise, each
version has a period of effectiveness, as does each component of its attribute and
geometric description (Figure 3).  A period of effectiveness is a timespan bracketed by
start and end times.



Intergraph:  July 2, 1995

5

T1 T3

Feature A 
  
  
  

born changed died
T2

Version 1 Version 2 

Figure 3.  Bracketing of lifespan and periods of effectiveness.  Feature A was "alive" or "effective" from T1
to T3.  Version 1 was effective from T1 to T2.

In a system with a linear temporal topology (i.e., where only one version of a given
feature is effective at any given moment), it is possible to allow end time of versions and
attributes to be implicit if versions can be sorted sequentially by effective dates (Figure
4a).  Alternately, one can explicitly include a timestamp to close the temporal interval
when a version (and by extension, an attribute) is effective (Figure 4b).  Table 2 presents
the pros and cons of explicit bracketing.  In OM, we have the additional option of
maintaining the versions of a feature in sorted order of database time using relatively
ordered channels.

a b c d e 

1 2 3 4 
Feature A 
  
  
  

version:  from node a to node b 
version:  from node b to node c 
version:  from node c to node d 
version:  from node d to node e 

a)  implicit  b)  explicit1:  from node a 
2:  from node b 
3:  from node c 
4:  from node d 

Figure 4.  Bracketing of effective dates for versions.  a) If versions are sorted, the end of an interval
implicitly coincides with the beginning of the previous version.  b) If effective dates are bracketed at start
and end, versions need not be sorted and complex temporal topologies are supported.

Table 2.  Pros and cons of implicit vs. explicit bracketing of effective interval.

Implicit                                                                            Explicit                                                         

Reduces storage via fewer timestamps Additional timestamps

Only the simplest (linear) temporal topology is Branching and complex temporal topologies
  supported   are supported

Error correction options are limited More options for error correction, uncertainty

To find end date, must find next version Entity described completely by its attributes



Intergraph:  July 2, 1995

6

The temporal prototype will explicitly bracket effective intervals for features and
versions.  Feature birth and death will be bracketed in both world and database time, to
permit rapid access to features existing at a moment.  Versions will be bracketed in
world and database time to permit rapid access to information about the current feature
state at a moment.

Attributes and geometry also have periods of effectiveness.  We plan to timestamp
attributes and geometry only with effective start time in world time.  End time and
database times can be derived by traversing the temporal data structure, should this
information be required.  Table 3 and Figure 4 summarize how timestamps are used for
each logical entity in the object model.  Figure 5 shows how they bracket features and
versions.  Figure 6 illustrates the mechanics of feature, version, and attribute
timestamping.

Table 3.  Timestamps planned for the temporal prototype.

Entity                      Timestamp              Primary query supported                                                            
Feature world birth When was the earliest sighting of this feature?

world death When did the feature cease to exist?
db birth When did the feature first enter the db?
db death When was the feature registered as nonexistent?

Version world start What was the effective state of the feature at this time?
until date When was the last time the state was confirmed by source?
world end When was the world state superseded by another?
db start What did the db show to be effective at this time?
db end When was the db state superseded by another?

Attribute world start Since when did this attribute hold this value?

world start 
until date  
world end 
db start  
db end

Feature Version Attribute 
has 

1+

Geometry
has 

1+

has 

1+

world birth 
world death 
db birth  
db death

world start world start 

Figure 4.  Object model with temporal attributes added.



Intergraph:  July 2, 1995

7

W(T1) W(T3) 
Feature A 
  
  
  

b) change 

World start:  W(T1) 
World end:  null  
DB start:  D(T1)  
DB end:  null 
FACC:  nnnn 
Attributes -> 
...Composition  
......value:  black 
......world start:  W(T1) 
...Elevation  
......value:  89  
......world start:  W(T1) 

Superseded version Effective version 

a) initial state

born changed diedX 
W(T2) 

Feature data -> 
...World birth:  W(T1)  
...World death:  null 
...DB birth:  D(T1) 
...DB death:  null

World start:  W(T1) 
World end:  W(T2) 
DB start:  D(T1)  
DB end:  D(T2)  
FACC:  nnnn 
Attributes -> 
...Composition  
......value:  black 
......world start:  W(T1) 
...Elevation  
......value:  89  
......world start:  W(T1) 

World start:  W(T2) 
World end:  null  
DB start:  D(T2)  
DB end:  null 
FACC:  nnnn 
Attributes -> 
...Composition  
......value:  lattice 
......world start:  W(T2) 
...Elevation  
......value:  89  
......world start:  W(T1) 

Feature data -> 
...unchanged

World start:  W(T2) 
World end:  W(T3) 
DB start:  D(T2)  
DB end:  D(T3)  
FACC:  nnnn 
Attributes -> 
...Composition  
......value:  lattice 
......world start:  W(T2) 
...Elevation  
......value:  89  
......world start:  W(T1) 

c) death
Feature data -> 
...World birth:  W(T1)  
...World death:  W(T3)  
...DB birth:  D(T1) 
...DB death:  D(T3) 

Figure 6.  Prototype plan for bracketing effective dates in world and db time.  Attributes are bracketed
explicitly in world time.  Versions are bracketed explicitly in db time.

4. The role of timestamps in information retrieval

The timestamps in the prototype system provide the basis for responding to a wide
variety of temporal queries.  Table 4 lists some logical constructs that can be created
through use of timestamps.  Table 5 describes typical queries and their means of
response.



Intergraph:  July 2, 1995

8

Table 4.  Logical constructs using timestamps.  TOI(W) and TOI(D) are "time of interest" in world and db.

Existing in world  MAX[Where Feature.world birth < TOI(W)< Feature.world death]1

Existing in db Feature.db death < TOI(D) < Feature.db death

Lifespan (W) Feature.world death - Feature.world birth

Lifespan (D) Feature.db death - Feature.db birth

State (W) Version.world start < TOI(W)< Version.world end
OR [Version.world start < TOI(W) AND Version.world end = NULL]

State (D) Version.db start < TOI(D)< Version.db end
OR [Version.db start < TOI(D) AND Version.db end = NULL]

State duration (W) Version.world end - Version.world start

State duration (D) Version.db end - Version.db start

Attribute volatility TOI(W) - Attribute.world start

Table 5.  Sample queries using timestamps.

To retrieve a snapshot at a TOI(W) in an AOI:
For all features within the Area(AOI),

For all features Existing in world at Time(TOI)
Find Feature state(W) at Time(TOI)

To retrieve a snapshot showing what was known about the AOI as of TOI(D):
For all features within the AOI,

For all features Existing in db at TOI(D)]
Find Feature state(D) at TOI(D)

To find the history of a feature of interest:  Sort all versions of the feature of interest by world birth

To find transactions to a feature of interest:  Sort all versions of the feature of interest by db birth

To find the last world change before a TOI(W) to a feature of interest:
Of the versions where world end < TOI(W), find the one with the highest world end value

To find the next world change after a TOI(W) to a feature of interest:
Of the versions where world start > TOI(W), find the one with the lowest world start value

To find the last db transaction before a TOI(D) to a feature of interest:
Of the versions where db end < TOI(D), find the one with the highest db end value

To find which attributes changed to cause a new feature version:
Find the attributes where attribute.world start = version.world start

5. Expressing temporary changes

                                                
1There may be duplicate versions at one timeslice for error correction.  Such "ties" in time are broken by
looking to database time.



Intergraph:  July 2, 1995

9

Some changes are temporary.  The temporal prototype will automatically reverse a
temporary change when its period of effectiveness ends (e.g., when current time = end
time).  One approach is to embed a trigger in the end time attribute (Figure 7).

World start:  W(T3) 
World end:  null  
DB start:  D(T3)  
DB end:  null 
FACC:  nnnn 
Attributes -> 
...Composition  
......value:  black 
......world start:  W(T3) 
......(trigger fired) 
...Elevation  
......value:  89  
......world start:  W(T1) 

World start:  W(T2) 
World end:  W(T3) 
DB start:  D(T2)  
DB end:  D(T3)  
FACC:  nnnn 
Attributes -> 
...Composition  
......value:  black 
......world start:  W(T2) 
......(trigger fired) 
...Elevation  
......value:  89  
......world start:  W(T1) 

World start:  W(T2) 
World end:  null  
DB start:  D(T2)  
DB end:  null 
FACC:  nnnn 
Attributes -> 
...Composition  
......value:  black 
......world start:  W(T2) 
......(a trigger will reverse this  
...... change as specified) 
...Elevation  
......value:  89  
......world start:  W(T1) 

World start:  W(T1) 
World end:  W(T2) 
DB start:  D(T1)  
DB end:  D(T2)  
FACC:  nnnn 
Attributes -> 
...Composition  
......value:  black 
......world start:  W(T1) 
...Elevation  
......value:  89  
......world start:  W(T1) 

W(T1) W(T2) 
Feature A 
  
  
  

b) temporary change 

c) revert to original 

W(T3) 

World start:  W(T1) 
World end:  null  
DB start:  D(T1)  
DB end:  null 
FACC:  nnnn 
Attributes -> 
...Composition  
......value:  black 
......world start:  W(T1) 
...Elevation  
......value:  89  
......world start:  W(T1) 

Superseded version Effective version 

a) initial state

Figure 7.  Treatment of temporary changes.  a)  Original version before temporary change.  b)  A
temporary change is entered.  c)  The trigger reverses the change by creating a new version.



Intergraph:  July 2, 1995

10

6.      Confirming inferred information    

Information on a given feature may come in pieces.  Evidence of its existence may be
gleaned before details of its attributes are available; alternately, attributes may be added
with low certainty levels, then later confirmed.  Two approaches are possible when
information arrives incrementally.  One is to treat each stage of loading as a distinct
version of the feature.  Another is to version only when a change has occurred, not when
more information is added or existing information is confirmed.  Table 6 lists pros and
cons of the two approaches.  The main advantage of not versioning is that fewer
versions result.  However, this treatment is inconsistent with the treatment of other
changes and updates to the database.  For that reason, we will version features when
any unfilled attribute is filled, or when a certainty value for an attribute is changed.
Figure 8 shows our provisional approach.

Table 6.  Pros and cons of versioning on confirmed or additional information.

Versioning                                                                      No versioning                                               

Shows when each item of information was Lesser accountability within the database
  available

Treats additional information and improved Is not consistent with treatment of other new
  certainty exactly as changes and corrections   information
  are treated

Makes no assumptions about newly available Assumes newly available information was true
  information   previously, if no prior information exists

Wasteful of storage due to additional versions Thrifty use of storage

Possibility of slower retrievals due to more Fewer versions could mean faster retrievals
  versions

Best if retroactive judging of decision-making - - Best if all critical uses of the database are in
   may occur    the present tense



Intergraph:  July 2, 1995

11

D(T1) D(T2) 
Feature A at W(T1)  
  
  

b) fill an attribute  

c) improve certainty

D(T3) 

World start:  W(T1) 
World end:  null  
DB start:  D(T1)  
DB end:  null 
FACC:  nnnn 
Attributes -> 
...Composition  
......value:  null  
......world start:  null  
......certainty:  null  
...Elevation  
......value:  null  
......world start:  null  
......certainty:  null  

Superseded version Effective version 

a) initial discovery

P=0.5 P=0.9 

World start:  W(T1) 
World end:  null  
DB start:  D(T1)  
DB end:  D(T2)  
FACC:  nnnn 
Attributes -> 
...Composition  
......value:  null  
......world start:  null  
......certainty:  null  
...Elevation  
......value:  null  
......world start:  null  
......certainty:  null  

World start:  W(T1) 
World end:  null  
DB start:  D(T2)  
DB end:  null 
FACC:  nnnn 
Attributes -> 
...Composition  
......value:  black 
......world start:   W(T1)  
......certainty:  0.5 
...Elevation  
......value:  null  
......world start:  null  
......certainty:  null  

? 

World start:  W(T1) 
World end:  null  
DB start:  D(T2)  
DB end:  D(T3)  
FACC:  nnnn 
Attributes -> 
...Composition  
......value:  black 
......world start:  W(T1) 
......certainty:  0.5 
...Elevation  
......value:  null  
......world start:  null  
......certainty:  null  

World start:  W(T1) 
World end:  null  
DB start:  D(T3)  
DB end:  null 
FACC:  nnnn 
Attributes -> 
...Composition  
......value:  black 
......world start:  W(T1) 
......certainty:  0.9 
...Elevation  
......value:  null  
......world start:  null  
......certainty:  null  

Figure 8.  Treatment of inferred and added information.  Three successive sources of the same date are
available at three different times.  a)  Original discovery of feature without attribute values.  Note that
world time also is stored at the feature level to describe date of birth.  b)  The composition value is added
with a high degree of uncertainty.  c) The certainty of the composition value improves.



Intergraph:  July 2, 1995

12

7.     Error correction    

Many of the complexities of temporal systems are due to ambitious error-correction
requirements.  There will be no shortage of errors in TFG; the goal is to decide in
advance which errors are important to correct and which can be tolerated.  Imagine the
sequence where a new feature enters the database, new source from an earlier date
shows the feature in a different light, and later source shows the original source was
erroneous.  Figure 9 illustrates some of the error cases that could occur in TFG, since
source will arrive and be applied out of sequence, and different source documents
could provide conflicting information about features.  Note that error can occur in
initial birth date, in the past tense, and in the present tense.  Table 7 illustrates the
complexity that would occur if all such errors were recorded and managed via
versioning.

earlier 
version

W(T1) 
actual birth  
undetected

W(T2)

Feature A 
 
 
 

world timeline

db timeline
D(T1) D(T2) D(T3) D(T4)

initial 
version: 
db birth

error in 
earlier 
version

error in 
initial version

W(T3)

Figure 9.  Discovery of error.  The example shows a feature being born in the database that existed for
some time previously in the world.  Errors are found in the present and past.

One of the early motivations for research in temporal databases was to improve on
transaction-rollback methods of viewing past database states.  Today, a crucial element
of temporal system design is to determine a minimum set of error correction measures
to avoid needless complexity.  Table 8 enumerates potential error correction
requirements, approaches, and the queries they support.  Of the three requirements,
each is successively more difficult to achieve.  Within a requirement, the approaches are
grouped from lowest to highest impact on system cost and complexity.  Thus, the final
entry in the table (to correct the past and to explain the error) adds considerable cost
and complexity to a system and should be attempted only with strong justification.



Intergraph:  July 2, 1995

13

Table 7.  Error traffic caused by out-of-sequence and poor-quality source.  If every error were addressed
using versioning procedures, versions would be interleaved in world time as shown.  The table describes
the situation expressed by the source, the relationship between world and database time, and the new
sorting of versions.  Changes are in bold underlined type.

Situation Versions sorted by world time

Source 1 shows a new feature (W<D) V1

Source 2 shows the same feature at an V2 V1
earlier time with different attributes (W<D)

Source 3 shows the same feature at an even V2/V3* V1
earlier time with the same attributes (W<D)

Source 4 shows a distant future change (W>D) V2/V3 V1 V4

Source 5 shows an immediate change V2/V3 V1 V5 V4
of limited duration (W<D)

Source 5's duration expires (W = D) V2/V3 V1 V5 V6 V4

Source 4's expected change is canceled (W<D) V2/V3 V1 V5 V6 V4/V7*

Source 1 was erroneous (W<D) V2/V3 V1/V8* V5 V6 V4/V7

Source 5's  temporary change was erroneous V2/V3 V1/V8 V5/V9* V6 V4/V7

The simplest way to correct errors is to replace the offending information with the
correct information.  However, replacement prevents the user from reviewing the past
and finding the temporary presence of an error.  Such information can be key,
particularly when judging the goodness of decisions and the performance of decision-
makers.  To do this, the database must describe what information was available to the
decisionmaker at the time of the decision, even after subsequent updates and
corrections.  A better approach to error correction is to superseded the incorrect
information with correct information, clocking changes in database time.  This strategy
also provides a graceful means of database rollback.

The model for update and error correction in a temporal system is a transaction-based
financial accounting system.   By making a later entry to correct an earlier error, one
supersedes but never deletes information.  Information is additive; thus, the accountant
posts entries when a payment comes due, payment is received, check bounces, and a
new payment is received.  If a check is entered erroneously, the error is recorded as a
transaction; the original (erroneous) entry is not erased or overwritten.  The system
provides the answer to the questions:  what did we know? And when did we know it?
In the case of the accounting system, the goal is to know what accounts are payable,
received, and cash on hand.  How to handle geographic transactions relates directly to
what information the system must provide.



Intergraph:  July 2, 1995

14

Table 8 summarizes options for feature update, present-tense error correction, and
correction of errors in data that already are superseded.  Its purpose is to assist a
prospective user to carefully assess the importance of gaining responses to the queries
listed in Column 2.  It should be clear from Table 7 that retroactive error correction
comes at great cost, and should only be undertaken with clear and compelling
requirements.

Table 8.  Error correction requirements and approaches, ranked in impact on system cost and complexity.

Requirement/Approach                                         Queries supported                         

Requirement:  update feature data
Approach:

- Overwrite outdated info What is the state of this feature?

- Supersede outdated info keeping a How has this feature changed over time?
historical record of changes (W)

- Supersede outdated info via transaction log (D) How did our db describe this feature over time?

- Supersede outdated info, maintaining a How has this feature changed, and how
history (W) and transaction log (D) correct was our db?  What was the time lag?

Requirement:  correct present-tense data
Approach:

- Overwrite incorrect info What is the state of this feature?

- Supersede incorrect info with correction (W), How did our db describe this feature over time?
maintaining transaction log (D)

- Supersede incorrect info with correct ion (W), What are the competing certainties of the
plus info that describes error detection (W) correct and (probably) incorrect info?  How
and transaction log (D) and when was the error detected?

Requirement:  correct past-tense data
Approach:

- Don't What did we know in the past?

- Insert corrected info (W), maintaining How does what we knew compare to what
transaction log (D) we now know?

- Insert corrected info (W), plus info that What are the competing certainties of the
describes error detection (W), plus correct and (probably) incorrect info in the
transaction log (D) past tense?  How and when was the error detected?



Intergraph:  July 2, 1995

15

Figure 10 illustrates the suggested error-correction strategy.  However, no error
correction will be prototyped due to time restrictions and a need to investigate
requirements at a finer level of detail.

W(T1) W(T2) 

Feature A 
  
  
  

b) earlier version W(T1)  

c) correction at W(T1)

Superseded version Effective version 

a) initial version W(T2)

world timeline

db timeline Cold Start D(T2) D(T3) D(T4) 

initial 
version 

earlier 
version 

error in  
persent tense 

error in  
past tense

d) correction at W(T2)

World start:  W(T2) 
World end:  null  
DB start:  Cold Start 
DB end:  null 
FACC:  nnnn 
Attributes -> 
...Composition  
......value:  open lattice  
......world start:  W(T2) 
...Elevation  
......value:  89  
......world start:  W(T2) 

(no action; system does not correct the past) 

(no action; system does not correct the past) 

World start:  W(T2) 
World end:  null  
DB start:  Cold Start 
DB end:  D(T4)  
FACC:  nnnn 
Attributes -> 
...Composition  
......value:  open lattice  
......world start:  W(T2) 
...Elevation  
......value:  89  
......world start:  W(T2) 

World start:  W(T2) 
World end:  null  
DB start:  D(T4)  
DB end:  null 
FACC:  nnnn 
Attributes -> 
...Composition  
......value:  black 
......world start:  W(T2) 
...Elevation  
......value:  89  
......world start:  W(T2) 

Feature data -> 
...World birth:  W(T2)  
...World death:  null 
...DB birth:  Cold Start  
...DB death:  null

Feature data -> 
...unchanged

Figure 10.  Recommended error correction for TFG and for most temporal systems.  Only errors in the
present tense are corrected unless strong justifications for past-tense corrections are found to exist.



Intergraph:  July 2, 1995

16

In sum, one must be pragmatic about what aspects of error are of interest and in what
form the information would be needed.  Pending detailed discussion of TFG's temporal
requirements, we suggest the following strategy:

• During cold start, data capture creates a unified base state, where each feature has
only one version, compiled from the best-available information, timestamped with
its source dates, and posted with its certainty values.  The base state is comparable to
a map, where features have differing lineage and currencies, but conflicts are
resolved before capture.

• Following cold start, corrections are made only on present-tense versions.  Updates,
too, would be made only on present-tense versions unless clear requirements exist to
"densify" the past-tense temporal data in TFG.

8.     Temporal data management methods

Methods are procedures associated with an object.  Our logical model has four primary
components:  feature, version, attribute, and geometry.  Because physical
implementation will differ from the logical description presented here, we do not link
methods with logical objects but describe them as they relate to the system as a whole.
The temporal prototype will implement a subset of the following methods.

CREATE FEATURE
Update the database with a new feature.  This method is invoked when the feature identity
changes so extensively that the feature is now a new feature.
• Create a new feature structure
• Timestamp world birth
• CREATE VERSION
-------------

CREATE VERSION
Update the database to show a new present-tense state of the feature.
• Create a new version structure
• Timestamp world start
• If there is an existing version, SUPERSEDE VERSION, using the new version's world

start as the superseded version's world end
• Insert new version in correct temporal sequence, if physically ordered
-------------



Intergraph:  July 2, 1995

17

END FEATURE LIFESPAN
End the lifespan of the feature.
• Timestamp world death
• SUPERSEDE VERSION
• Commit to db; timestamp db death
-------------

SUPERSEDE VERSION
Move the outdated feature state to the past tense.
• Timestamp world end
• Move superseded graphics to vector graphics
• Commit to db; timestamp db end
-------------

FIND LATEST VERSION
Locate the present-tense version.
• If versions are kept in sorted list (relatively ordered channel), select last item
• If versions are sorted logically, find version where world end = NULL AND

MAX(db start)
-------------

FIND LATEST UPDATE
Locate the most recent change to the feature.
• Find version where MAX(db start)
-------------

FIND EARLIEST VERSION
Locate the earliest manifestation of the feature.
• Find version where MIN(world start) AND MAX(db start)
-------------

FIND FIRST ENTRY
Locate the first version created for the feature.
• Find version where MIN(db start)
-------------

FIND STATE AT DATE (WT)
Locate the correct version for a given date (WT).
• Find version where world start < WT AND (world end > WT OR world end =

NULL) AND MAX(db start)
-------------



Intergraph:  July 2, 1995

18

FIND STATE AS OF DATE (DT)
Locate the version effective in the db as of the given date (DT).
• Find version where db start < DT AND (db end > DT OR db end = NULL)
-------------

INTEGRATE NEW FEATURE DATA
Take new feature information and process it.  Only the "update" methods invoked by this
method (i.e., not the error correction or certainty improvement methods) are described in this
section.  Others will be added if they are undertaken in the prototype.
• If it is a new feature, then CREATE FEATURE; exit
• If the feature has died, then END FEATURE LIFESPAN; exit
• If it is an update to a feature

then if it includes changes to identity attributes
then UPDATE IDENTITY ATTRIBUTES
else if it includes changes to domain attributes

then UPDATE DOMAIN ATTRIBUTES
else if it includes changes to versioning attributes

then UPDATE VERSIONING ATTRIBUTES
else if only graphics are changed

then UPDATE GRAPHICS
• If it is a correction to a feature

then if it includes changes to identity attributes
then CORRECT IDENTITY ATTRIBUTES
else if it includes changes to domain attributes

then CORRECT DOMAIN ATTRIBUTES
else if it includes changes to versioning attributes

then CORRECT VERSIONING ATTRIBUTES
else if only graphics are changed

then CORRECT GRAPHICS
• If it is an improvement to a feature (via more certain or additional attributes)

then if it affects identity attributes
then IMPROVE IDENTITY ATTRIBUTES
else if it affects domain attributes

then IMPROVE DOMAIN ATTRIBUTES
else if it affects versioning attributes

then IMPROVE VERSIONING ATTRIBUTES
else if only graphics are affected

then IMPROVE GRAPHICS
-------------



Intergraph:  July 2, 1995

19

UPDATE IDENTITY ATTRIBUTES
Change the feature identity, which causes the old feature to die and a new one to be born.
• CREATE FEATURE
• Populate version attributes with NULL values
• Populate graphics with existing graphic
• Insert attribute updates found in the update packet
• Insert graphic updates found in the update packet
• Commit new feature and version to db, timestamping with db birth and db start.
• END FEATURE LIFESPAN of previous feature, using the source date of the new

identity attribute as the world death date.
-------------

UPDATE DOMAIN ATTRIBUTES
Integrate updates that may cause the feature to die and be reborn.
• Check all domain attributes to see if the feature will die and be reborn as another.
• If any update will cause the feature to die and be reborn

then
CREATE FEATURE
Populate version attributes with NULL values
Copy existing graphics to the new version
Insert attribute updates found in the update packet
Insert graphic updates found in the update packet
Commit new feature and version, timestamping db birth and db start
END FEATURE LIFESPAN of previous feature

else
CREATE VERSION
Copy existing attributes to the new version
Copy existing graphics to the new version
Insert attribute updates found in the update packet
Insert graphic updates found in the update packet
Commit the new version, timestamping db start

-------------

UPDATE VERSIONING ATTRIBUTES
Insert attribute changes that have no effect on feature life and death, but rather cause a new
feature version to be created.
• CREATE VERSION
• Copy existing attributes to the new version
• Copy existing graphics to the new version
• Insert graphic updates found in the update packet
• Commit the new version, timestamping db start
-------------

UPDATE GRAPHICS



Intergraph:  July 2, 1995

20

Insert graphic changes that have no effect on feature life and death, but rather cause a new
feature version to be created.
• CREATE VERSION
• Copy existing attributes to the new version
• Copy existing graphics to the new version
• Insert graphic updates found in the update packet
• Commit the new version, timestamping db start

9.     Temporal integrity constraints    

Table 9 lists integrity constraints that are possible in a working system.  However, the
temporal prototype will enforce no integrity constraints (due to time constraints).

Table 9.  Possible temporal integrity constraints

For any pair of world/db timestamps within a feature or a version (e.g., world birth/db birth; world death/db
death; world start/db start; world end/db end) :

world time _ db time
world time _ "db time + 30 (or less, as source timeliness improves)

For any set of versions of one feature

db start (superseded version) < db start (new version)
db end (superseded version) = db start (new version) +/- a small tolerance
world end (superseded version) = world start (new version) +/- a small tolerance
IF world start (version a) = world start (version b) THEN db start (version a) _ db start (version b)

10.     Issues of geometry and topology    

The following basic requirements exist for handling the geometric and topological
descriptions of features.

• Provide fastest possible present-tense performance; do not permit past-tense data to
impact speed of response to present-tense queries.

• Provide a capability to retrieve the geometric description of a feature at any moment
from Cold Start to the present.  Topological relationships can be recalculated rather
than stored for past-tense data.

• Provide a capability to symbolize past-tense graphics.

• Provide a capability to use past-tense graphics in such analytical procedures as
network analysis, buffering, and size/distance/adjacency computations.



Intergraph:  July 2, 1995

21

Our approach for treating geometric and topological descriptors is to treat the present-
tense data in the manner developed for TFG's use of OM:  in topologically integrated
datasets that use the high-speed topological operators of OM.  Thus, the present tense of
the temporal prototype will appear and function much as would an atemporal GIS.

When a feature in the prototype changes geometrically, its past-tense version will be
moved from present-tense "topological data" to "Vector Graphics."  Vector Graphics do
not include topological referencing and thus carry far lower storage overhead.  Vector
Graphics are analyzed using a set of analytical subroutines separate from those used to
analyze topological graphics.  Vector Graphics analysis is somewhat slower than the
topologically references analysis of topological graphics.  If sustained or intensive
analysis is needed, Vector Graphics can be re-integrated into a topological level.

The rationale for moving past-tense spatial data from topological to vector graphics is
pragmatic.

• If all data at all times are topologically intersected, the successively smaller
fragments become increasingly harder to manage.

• Vector graphics, having originated in the topology layer, are topologically clean
before being moved.

• No practical reason seems to exist for topological intersection of features that existed
at different times.

• By moving old versions from the present-tense data stores, we ensure that the
performance of present-tense analysis does not suffer from the presence of past-
tense information.

11.  Measures to facilitate analysis

The requirements we aim to meet go beyond merely storing and retrieving temporal
information about geographic features.  The temporal features must be analyzed in a
variety of ways, and be conducive to analysis at any stage of database loading.  An
important requirement for analysis is rapid retrieval; this will be addressed by
architecture and data structuring.  But a second important requirement is that data are
stored in a meaningful way that preserves all available information.

The FACCS coding system provides a feature-attribute breakdown that describes basic
feature information.  However, additional information is needed to describe changes to
features.  Earlier sections in this report discuss the need for timestamps and versioning.
Of equal importance is to describe agents of change to the extent that they are known.

Information about feature changes will enter the system in two ways.  The first is
through source documents that describe the state of a geographic area or feature.  For
our purposes, these are "state data."  A second way to acquire information is through



Intergraph:  July 2, 1995

22

knowledge of an agent of change–a flood, snowstorm, avalanche, earthquake, or
bombing–that is likely to affect feature states.  For our purposes, these are "event data."
The documents that describe state and event data can be considered "evidence."  Thus,
states, events, and evidence are three critical components of temporal information.
Each must be described independently to ensure that all data are carefully preserved
(Figure 11).  Table 10 lists some states, events, and evidence applicable to TFG.  Each
should be treated as a "feature" of sorts, since each has areal extent, temporal duration,
and descriptive attributes.

State  
attribute description 
areal extent 
date of capture

Evidence  
attribute description 
areal extent 
date of capture

Event 
attribute description 
areal extent 
date of capture

Figure 11.  The interplay of states, events, and evidence.  Note that states, events, and evidence all have
spatial and temporal extent, plus attributes.  States and events both should be referenced to the available
evidence that describes them.  Most important, many state changes are predicated on the events that
precede them.  In many cases, we can hypothesize state change following an event that overlaps its
area, while awaiting new evidence on the state.

Table 10.  Examples of TFG states, events, and evidence.  The new "event" features should be assigned
any attributes necessary to hypothesize state changes in their areas.

States Events Evidence
roads bombing ground survey
streams heavy rainfall air survey
bodies of water heavy snowfall reconnaissance reports
bridges heavy wind maps and charts
vegetation areas flooding
buildings earthquake
ice masses avalanche or landslide

One reason to disaggregate states and events is that events are known to affect states,
but the precise effect is unknown until new evidence arrives to describe it.  Treating an
event as a special class of feature permits us to hypothesize or model change while



Intergraph:  July 2, 1995

23

awaiting reconnaissance data.  It also permits later analysis of causality, i.e., what state
changes or events historically have followed other state changes or events, and why?

Object-oriented tools permit the inclusion of triggers in event features, which can be
designed to modify state features that are intersected.  Thus, the system can be designed
to automatically precipitate hypothesized state changes (presumably with low certainty
values) upon input of event features.  Automated state changes would be reversable by
an analyst if they contradicted what the analyst believed to be true, but they would be
designed to mimic the information the analyst would input manually in the absence of
better information, and to incrementally improve the timeliness of the data while
awaiting the receipt of better evidence.

To illustrate how events might trigger state changes, imagine a bombing where a road is
known to have been hit.  Air reconnaissance may be available immediately following
the attack, but dust and debris preclude assessment of road damage.   One approach to
this situation would be to assess bomb damage manually to the degree possible using
sources available, then update the database directly.  Alternately, we can add a feature
entitled "bombing event" to the database.  The insertion of a bombing event triggers
certain defined changes to the features it intersects.  An analyst can then edit the
automatically generated updates if they contradict information that is obtainable from
source documents.  The goal is to speed the processing of bomb damage assessment
data, and to store information on bombing events in a way that supports useful
analysis.

A bombing event feature is described via areal extent, temporal duration, and any
helpful attributes that may assist in damage assessment and later analysis.  As an
example, roads that intersect a bombing event feature might be changed as follows.

• Certainty values on attributes are lowered.
• Where roads intersect the center of the bombed area, the "EXS" value is changed to

"nonoperational."
• Where roads intersect the edges of the bombed area, the "RST" value is changed to

"fair weather."

Figure 12 illustrates this strategy.  The illustrated bombing event has a different impact
on roads depending on distance from center.  Note that changes resulting from the
bombing event would still permit a shortest-path query to reach Point B from Point A if
low certainties were tolerable and fair-weather travel possible.  An analyst would
review the automated values generated from the bombing event's entry into the
database and adjust certainties, geometry, or attribute values, as needed.  The bombing
event feature would remain in the database, timestamped and available for later
queries.



Intergraph:  July 2, 1995

24

Point B

Point A

two lane, all weather 
two lane, fair weather 
two lane, nonoperational

Point B

Point A

T1 T2

bombing 
event

Point B

Point A

T3

Road legend

Figure 12.  At T1, a vehicle can easily pass from Point A to Point B in any weather.  Following the
bombing event at T2, the route still is passible but only during fair weather.

The advantages of this approach are as follows.

• It is possible to analyze data with more complete information.

• It is possible to query specifically for bombing events within given areas,
timeframes, and parameters.

• It is possible to examine how rapidly lines of communication were repaired
following previous bombing events by referring to the past-tense database.  This
information could be used to extrapolate how quickly a recently bombed roadway
or airfield will be back in service.

It may be useful to examine each of the above advantages more completely.  Certainly
network analysis can occur if terrain features ("state data") are updated directly,
without resorting to digitizing event data.  However, lacking good reconnaissance on
bomb damage, we could still hypothesize severity of bomb damage, and even entertain
various hypotheses.  One approach would be to change model values to hypothesize
greater or lesser destruction at different radial distances from the center, roll back the
database to retrieve the pre-bombed state, and re-apply the bombing event with new



Intergraph:  July 2, 1995

25

model parameters.  This type of capability, which could be automated, provides for
more flexible "what if" analysis than an environment that stores only probabilities of
correctness.  Similar arguments exist for treating severe weather and other dramatic
natural occurrences as event features.

A second advantage of processing events as features is it permits us to query them
directly.  Then, changes to terrain features that resulted from events can be re-assessed
in light of later evidence.  For example, if it were discovered that tricks had been
employed systematically to make bomb damage appear more or less extensive than the
actuality, we might wish to recall all bombing event features and re-examine how the
database changed as a result.  This could help to remove errors that persist due to
misplaced beliefs.  In addition, event data can help in assessing new evidence:  rubble
remaining from bombing events could be mistaken as construction debris (Figure 13),
or standing water after heavy rainfall could be classed erroneously as hydrology.

A third advantage of maintaining event features is to predict future behavior based on
the past.  Cumulative data that describe speed of road repair provide valuable
information about ability to mobilize resources, and capability of resources.  Data
describing absorption of standing water following heavy rains provide information on
soil permeability that may not otherwise be available.  While it would be unwise to
draw firm conclusions based on one event, a series of events paired with subsequent
state changes can strongly indicate future effects of events on terrain feature changes.

The planned prototype will implement a limited number of event features for
demonstration purposes.  To implement event features requires defining them within
the framework of FACC, and adding methods to cascade changes through the database
based on attribute values and feature intersections.

12.  Summary of this work to date

This report summarizes the conceptual work that precedes a prototyping effort.  It
discusses critical issues of temporal data management and usage, and identifies a set of
timestamps and versioning procedures that are the building blocks of spatiotemporal
data management.

Many issues remain open because their approach is application-dependent.  For those
issues, the report has identified alternatives and described plusses and minuses.  Open
issues include built-in queries (e.g., to exploit relationships between world and database
time), error correction, details of geometric and topological modeling, integrity checks,
and extensions to the feature-attribute breakdown that govern representation of events.

A one-size-fits-all system design would likely be a poor fit for many; therefore, the goal
of this continuing effort is to define the fundamental design decisions that must be
addressed by any spatiotemporal system, and various design alternatives.  The
prototype will illustrate one approach to meeting a specific set of requirements and
provide information on performance and architectural issues.



Intergraph:  July 2, 1995

26

two lane, all weather 
two lane, fair weather 
two lane, nonoperational

Point B

Point A

T2

bombing 
event

Point B

Point A

T5

Road legend

Point B

Point A

T5

a.  Construction or destruction? b.  Retrieve past events...

c.  New unexplained feature

Figure 13.  Resolving questions about new data.  a)  New source shows two areas of disturbance, either
of which could reflect construction activity, possibly to add to the road network.  b)  By examining the
database, we see that one area could be explained by historic bomb debris.  c)  The other area is
unexplained and must be considered a new feature to be identified.


